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computing to the public’s attention 
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simple commands | 

FILTER TO FLOATING POINT 
A weekly glossary of computing terms 
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DUCKS & | 
~DROIDS — 

Machines created in the image of man that 
can perform human tasks have long 
fascinated engineers and writers alike. We 
begin a series of articles that explore the 
science of robotics, starting here with a look 
at past attempts to build such machines, 
from the mechanical inventions of the 18th 

century to present day industrial robots. 

For hundreds of years, many people have been 
attracted to the idea of mechanical men in one 
form or another. Philosophers, engineers and 
inventors have set their minds to creating 
machines that mimic human behaviour. Although 
robots are nowadays less likely to look like humans 
and are designed to perform a specific range of 
actions, the earliest mechanical men were 
designed to look as lifelike as possible and suggest 
that they could be capable of any human action. 

The first mechanical robot, however, wasn’t — 
given the form of a man. In 1738, Jacques de 
Vaucanson (1709-1782), a French engineer, 
presented a mechanical duck to the Académie 
Royale des Sciences in Paris. The duck was able to 
flap its wings, quack and eat food. Later in the 18th 
century, a Swiss inventor, Pierre Jacquet-Droz 
(1721-1790), created a set of mechanical puppets 
that could perform a variety of actions. One could 
write, one was able to draw figures, and another 
played music on an organ. By the end of the 19th 
century there were large numbers of such 

machines in existence, all based on clockwork 

mechanisms. | : 
In the Victorian era, numerous figures were 

constructed that were remarkably lifelike, and not 
all of these were based on clockwork. In 1893, 
George Moore built a mechanical man that relied 
on steam power as its motivating force — an 
interesting side-effect of which was to enable the 
mechanical man to puff a cigar and appear to 
exhale smoke. 7 ; : 

Newer technologies have stimulated the 
development of more ambitious machines: from 
the simple mechanical men constructed out of 
Meccano sets that are capable of walking across 
the floor, to the classic ‘Elektro’ man, built by the 
American company, Westinghouse. ‘Elektro’ was 
a seven foot tall (2.15 metres) mechanical man that 
could speak up to 80 different words, count, walk, 
talk, salute and distinguish between different 
colours. He was powered by no less than 11 
electric motors and weighed 117 kgs (260 lbs). 
Controlling this huge bulk was a ‘brain’ that 
consisted of a total of 82 different relays. 
But each of these mechanical men had its 

ROBOTICS/APPLICATION (..- > / 

you might want when you think of your ideal 

robot. A mechanical man that can draw figures 

will not do the shopping for you, and a mechanical 

man that can walk across the room will be unlikely 

to get even as far as the shops without walking into 

limitations. None of them, despite their obvious 

entertainment value, had any of the capabilities. 

THE KOBAL COLLECTION 

Robot Roots 
Fritz Lang’s 1926 science fiction 
classic ‘Metropolis’ influenced 
film-makers and audiences for 
decades, not least in crystallising 
vague contemporary images of 
progress and industry in The 
Machine, the first cinema robot star . 
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Fact And Fiction 
The most famous robots on 
television must be the Daleks. 
These are really armoured 
personnel carriers, controlled by 
their creators riding inside. 

Robbie The Robot from the film 
‘Forbidden Pianet’, epitomises the 
caring, sensitive robot of 
anthropomorphic legend. 

Topo, Prism’s now- 
discontinued household robot, was 
a half-serious attempt to introduce 

-robotics into the home 
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a lamppost. Each of these mechanical men was 
very definitely a machine — they typically 
performed a limited range of actions that required 
no decisions to be made, and did not appear to 
embody any kind of intelligence. 

ROBOTS IN FICTION 
But if the inventors and engineers were stuck for 
ideas, the writers of fiction certainly didn’t feel 
these creative restrictions. Science fiction has 
thrived on the idea of robots. In fact, the very word 
robot is the product of a fictional work. In 1923, 
the Czech playwright, Karel Capek (1789- 1938) 
wrote a play called R.U.R. — the title was an 
abbreviation for Rossum’s Universal Robots. The 
play was about the invention of mechanical men 
so perfect that they could carry out all of the tasks a 
human might perform. Eventually, the robots 
found that they had no use for men at all, which left 
the humans in a rather precarious position. In 
Czech, the word robotasimply means ‘worker’. So, 
the title of Capek’s play should have been 
translated as ‘Rossum’s Universal Workers’ but, 
somehow, the word ‘robot’ caught on, and this has 
since become the standard term for any 
mechanical man with human capabilities. 
Fictional fantasies about creatures constructed 

to resemble human beings go back to Mary 
Shelley’s well-known Gothic novel, Frankenstein 
(1818). Although it was not mechanical, the 
monster created by Victor Frankenstein was 
constructed from a set of parts, even though these 
were obtained by the rather gruesome process of 
raiding graveyards. The invading creatures in 
H.G. Wells’ The War Of The Worlds (1898) were, 
at least in part, robotic. 

Novelists of the 20th century, however, have 
explored in immense detail a fictional world 
inhabited by robots. The most notable 
contribution has been that of Isaac Asimov, the 
celebrated science fiction writer who began his 
career in 1940 writing short stories about robots 

The Daleks 

Robbie The Robot 

and their imagined operational problems. So 
complete is Asimov's visionary robotic world that 
he has even formulated the three Laws of 
Robotics. According to Asimov, the Laws are 
contained in the Handbook Of Robotics (56th 
Fdition, 2058 AD). Clearly, he was allowing a 
very reasonable timescale before robots become 
commonplace. 

In the cinema and on television, robots have 
also made their fictional mark. The television 
series Dr Who is densely populated with Daleks 
and Cybermen, and in the Star Wars films C3PO 
-and R2D2 are the equals of their human co-stars. 

In comparison with these flights of fantasy, the 
present day use of robots seems quite mundane. 
The industrial robots found on car assembly lines 
receive most of the attention nowadays. It is 
estimated that by 1985 there will be 25,000 robots 
in use in Japanese industry, 15,000 in the USA and 
8,000 in West Germany. Britain’s robot 
population is among the smallest of any industrial 
nation. By 1985, only 1,500 robots are expected to 
be in operation. Expansion of the European 
market for industrial robots is expected to 
continue unabated: by 1990 it is estimated that it 
will be worth £350 million. 

But, for many people, industrial robots seem 
rather dull. A machine that repeatedly welds parts 



on the framework of a car, or-endlessly sprays 
paint, is hardly the fictional image of robots. 
Whether the ideal robot will ever be created is a 

~ matter of conjecture. And whether such a robot 
would be designed in the image of man is also 
difficult to determine. But by taking a close look at 
some aspect of robotics, as we will be doing in this 
series of articles, we can judge for ourselves what 
form the robots of the future may have. 

Robot Speak 
| Robots, at least in fiction, have been given such a 

variety of names that you might find it useful to have 
a glossary of the most common terms used. Bear in 
mind though that just because something Is given a 
name, it does not i imply that it actually 
exists! 

Android: A robot designed to look like ahuman 

being in every respect. 
Anthropomorphic: Literally ‘man-like’. An android is 
anthropomorphic in every respect but many robots 
are designed to be anthropomorphic in only some 
respects. For example, they may have an arm that is 
like a human arm. 
Automation: The automatic control of a 
manufacturing process. 
Automaton: A machine with concealed workings that — 
usually performs only a predetermined series of 
functions. The early mechanical men were 
automata. It also has a more technical meaning 
when associated with automata theory, which is an 
analytical system by which any device can be 
Studied and described — robots, computers, even 
people. 
Cybernetics: [he study of systems of control and 
communications. Devised by Norbert Weiner in 
1947, the central claim of cybernetics is that it can 
be used to examine biological systems as if they 
were machines. | 
Cybert: A fictional idea of a mechanical humanoid. 
Cyhot: Also fictional; a robot with human mental 
abilities. 
Cyborg: A Cybernetic organism in which some parts 
are biological and others mechanical. 
Doppelganger: An exact replica of a particular living 
person — although this is usually a spirit or ghost. 
Droid: A good robot that obeys Asimov's Three Laws. 
End effector: Current terminology for a robot S 
‘hand. 
Homunculi: Little men or manikins. 

| Manipulator: Another term for a robot's hand. 
Mechanisation: The replacement of one process by a 

mechanical process. 
Metal-collar workers: Industrial robots. Human 
office workers are often called ‘white-collar 
workers, and manual workers are known as_blue- 
collar’ workers. Inevitably, robots have started to be 
referred to as metal-collar workers. 
Robot: A machine that is able to carry out some 
human functions, although it may not necessarily 
look particularly human. 
Roboties: The science of studying robots. 

ROBOTICS/APPLICATION | | 

Asimov’s Laws Of Robotics 
1. A robot may not injure a human being, or, through 
inaction allow a human being to come to harm. 

2. A robot must obey the orders given to it by human 
beings except where such orders would conflict with 
the First Law. 

3. A robot must protect its own existence as long as 
such protection does not conflict with the First and 
Second Laws. 

Ford — The Sierra Assembly Line 

What Is A Robot? 
If you look in the glossary you will see that we have 
defined a robot as ‘a machine that is able to carry 
out some human functions, although it may not look 
particularly human’. Obviously, this is a very wide 

| definition — it could be applied, for instance, to 
computers (because they carry out some human 
calculating functions). In common usage, however, 
a robot should have recognisable human qualities. tt 
may be able to move around, or perhaps even walk. 
It may have an arm that resembles a human arm. It 
may be able to see things and hear things. It may 
even have a very high degree of intelligence. 

The exact form and capabilities of robots depend 
in the main on two things: what we want them to do, 
and what we can get them to do. For instance, an 
industrial robot used for welding may not be able to 
move around — not because we could not make a 
robot move around, but because we want it to stay in 
one place and get on with the welding. Similarly, a 
domestic robot may be able to make a cup of tea, 
but it might not be able to bring it upstairs to your 
bed, because it may not be possible to build a robot 
that can climb stairs without spilling your tea! 

The term ‘robot’ has become the generic word for 
all human-like machines, and the limitations on 
what they are and what they can do rest with those 
who design and build them. These limits are being 
expanded almost daily. 

Fiat — Torsion Axle Assembly 

Ruling The Robot 
When robots are capable of 
independent action, then 
Asimov’s Laws may well form 
the basis of their behaviour. 
Today’s robots, however, are 
incapable of identifying a 
human, so the mores of robot- 
human interaction are as yet 
irrelevant 

Robot Assembly 
For some time to come, robots 
will be used mainly on 
production lines. The economics 
of mass production make them 
ideal assembly-line workers, as 
the Ford and Fiat factories plainly 
show. Specialisation usually 
demands that-these robots be 
reduced to one or two arms 
equipped with grippers, 
spanners and welding gear 
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technique of recursion (an instruction that 
refers to itself) to great effect. Coupled with 

interesting results. 

draw a square: 
! ~ RT-ANGLE os eee ck 

TO SQUARE | i _INSPI: SIDE ( ANGLE + Nc) INC au 
FD 90 ee Lee a oe 
RT 90 ee ee — 2 

ae SQUARE a —— faputs 507, 104030, 15220,53020will 
END ae _ do initially. Why do some shapes close and others @ 

2 Le Nae a hes toner cette en _ not? Can you: find ; a rule? She ee 

gem lf you were to try this out, tthe WEE’ Would Gidwa ‘The simple repetition of a. piece oF bade: is 
a J square and then carry on moving the — ea to as iteration. Loco uses REPEAT for this 

| Gor BREAK. The most noticeable thing about 1 

other words, it is ‘recursive’. 

©, SQUARE, so Loco fetches the defi 
ON » and begins to obey it. This will go on ad STOP RULES | oo oe 

ae infinitum if the program is not interrupted. All of the recursive pede we Have looked at ie ee 
It is also possible to use re urs a 

| procedures that require inputs: 
2 

TO POLY ‘SIDE ANGLE 
FD:SIDE 
RT :ANGLE a 
POLY ‘SIDE ANGLE 

END 

Serer 

es 

oe 3 ee — Ss oN 

Z ~ \ ‘ \ ‘ 

az input in the recursive call. ‘Thus: og ea ae 
fe NS \ \ : \ et es ‘ Fa” as 

as Bee. \ \ \ \ een : 3 ‘s teen te 

TO POLYSPI :SIDE “ANGLE ee ae 
FD :SIDE as 
RT-ANGLE 5 6 
POLYSPI ( ae 5 a Se 

END | | 
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) The LOGO language uses the mathematical 

variable inputs, the use of recursion in- 
procedures can produce some. ehh 

One of the first programs we defined i in the course os 
_ was a procedure to draw a square. The definition _ 
instructed the turtle to move forward a certain — 

distance, turn right 90 degrees and repeat ag : 
two steps three more times. cope is is another Tey to : Ce 

perimeter of the square until you pressed Control- - purpose, while other languages use a variety of. 

hing about this constructs, such as FOR.. . NEXT, REPEAT . . 
| new SQUARE procedure i is that i it t calls itself — in 

then turned RIGHT 90. The next instruction is _ 
nition of SQUARE — 

have defined so far in the course epee page cv ee as. - : 
| well as many we haven't looked at (you might like — 

| to try using the procedure with an angle value of __ 
89). It is also possible to change the value of the a : 

‘The only difference between this s procure and 3 2 

POLY is that five is added to the value of S| DE each 
time it is called. So if you began with POLYSPI 1090, 
then the first call would draw a line of length 10, 
the second would be 15, then 20, and so on. The 
result is a spiral. You might like to experiment with 

: different inputs: 10.90, 10 95, 10 120, 10 117, 10144 and 
10 142 are interesting starters. You could also try 

pS modifying the procedure — one possibility is to 
: change addition to subtraction or multiplication. 

Here’s a similar procedure that i increments the 
angle rather than the ode value: 

To INSPI SIDE ‘ANGLE INC | a : 
FD ‘SIDE 

have difficulty in. breaking | away from using ¥ 
- iteration, but turtle ‘graphics — is” ideal Tor oe 

: experimenting with 1 recursive e calls. epimers ee Bees 

so far continue repeating indefinitely. Clearly, we 
need a way to make a procedure stop at some 

point. Taking the SQUARE procedure as our © 
eee example, a possible place t to stop it would be after 
it has drawn a complete square and the turtle’s _ 

heading is back to 0. This can be done ety athe a 
a S : - ie ae rule’ to the ete aS , 

10 SQUARE. SIDE 
FD SIDE 
RT 90° 
IF HEADING = 0 THEN STOP 
SQUARE ‘SIDE 

END: | 

ae ee new primitives are STOP and IF, The first of 
Lae these commands causes a procedure to stop 

running and returns control to’ the calling 
procedure. An IF statement is LoGo’s way of 

ae making decisions. IF is followed by a condition, 
and THEN by an action that i is carried out if the } 
once is true. 

UNTIL, 
and WHILE. . . WEND. However, LOGO telies much : 

When this d ie vk . ee the - more on recursion: than it does. on iteration. dh. en procedure is run, LOGO etc e you've programmed in other lan, sae VOUTIBY 

definition of SQUARE and begins to obey the | y proms guages y a 

instructions. The turtle is moved FORWARD 50 and 

$y 



Let’s look at a version of POLYSPI with a stop rule 
and consider exactly what happens when it is run: 

TO POLYSPI : LENGTH 
IF :LENGTH > 15 THEN STOP 
FD :LENGTH 
RESO: 
POLYSPI (:LENGTH + 5 

END 

This is what happens when we run POLYSPI 10. The 
POLYSPI procedure is called and a local variable is 
defined with its value set at 10. Since this value is 
not greater than 15, LoGo proceeds to carry out the 
movement FD 10 RT 90, and then makes a new call 
to POLYSPI, but this time with an input value of 15. 
This causes a copy of the procedure to be called 
again. Because LENGTH is not greater than 15, the 
turtle is made to move FD 15 RT 90, and another call 
to POLYSPI is made. But this time, the local variable 
has been increased to 20, so the procedure stops 
and returns control to the procedure that called it 
(POLYSPI 15). This procedure in turn has come to 
its final line, and returns control to its calling 
procedure. This also stops, at which point the 
program has come to its end. 
We have shown how recursion in LOGO involves 

procedures calling copies of themselves. It is 
important to keep in mind that the recursive calls 
are copies that exist alongside the original 
procedure, working as if they were completely 
different from it. When finished, such a procedure 
always returns control to the procedure that called 
it. To illustrate more clearly the process of 
returning from procedure calls, we can rearrange 
POLYSPI in this way: 

TO POLYSPI :LENGTH 
IF :LENGTH > 15 THEN STOP | , 
POLYSPI ( :LENGTH + 15 
FD :LENGTH 
RT 90 

END 

If you run this you will see that the program does 
its drawing ‘backwards’: the lines are drawn 
spiralling inwards rather than outwards. (This will 
be shown more clearly if you use a larger value in 
the condition statement — for example, using 50 
instead of 15.) What is significant here is that LoGo 
draws each line as control is returned from the 
procedure calls. In our previous example, a line 
was drawn and control was then passed to another 
procedure. But here, all the procedures are called 
before any drawing begins, and the last created 
value of LENGTH is the one used first. 

Finally, we should note that recursion is a 
technique that uses up a lot of memory. 
Procedures in which the recursive call is in the last 
line are the most efficiently implemented, 
however, as they don’t take up any extra memory 
no matter how many times theyre called. If a 
procedure can be written so it is ‘end recursive’ 
then this is usually worth doing. 

Procedure Problem 3 
Write a recursive procedure to draw a tower of 
Squares one on top of the other, halving the length of 
the side each time. 

BRIAN MorRis 

COMPUTER ADVANCED COURSE 605 



Our series of articles on ‘programming | 
techniques should have provided plenty of 
ideas for program design and development. 
In this final part, we discuss the methods 
that may be used to test : a 1 finished program. 

One of the great echeiaies of programming inan 
interpreted language like BAsIc is that code can be | 
tested as it is being written. The programmer can, 
at any time, type RUN and see what happens. On 
most machines, it is a simple matter to “break’ into 

-a running program, PRINT the values of key 
variables, change these values and then CONTinue. 
All this means that most of the more obvious 
mistakes will have been spotted and corrected. Yet 
this kind of ad hocdebugging is not a substitute for 
testing, which must be done when the program 1S 
in its complete and final form. 

Validation testing aims to ensure that a program i 
will do exactly what it is meant to do. For any legal 
set of input data it must produce the correct 
output, and for any illegal input it must take the: 
appropriate actions. A simple way to test a 
program might seem to be to give it a sample of 
every legal input and then check that the results are 
as expected. For almost every program, this will be 
impossible, however. Even a program that takes 

_two integers, adds them and prints the result 
would need to be tested for every possible integer 

_ value! Yet this is only part of the problem, as every 
illegal value would need to be tested, too. 

Another possibility might be to look at every 
‘path’ through the program. A particular path can 
be found by following one route through a control 
flow diagram (flowchart) from beginning to end. 
Each branch on the way allows for alternate paths © 
and each loop adds more. Figure 1 shows a simple 
program that is a loop containing a number of 

IF... THEN statements. There are four paths 
within the body of the loop and the loop 1s 
executed 10 times. This means that the number of 
unique routes from ‘star?’ to ‘finish’ is 1,398,100 — 
a staggering number for what would probably — 
amount to a dozen lines of code. Clearly, testing 
this way would be out of the question. 

So, if exhaustive data testing does not work and 
exhaustive logic testing does not work, what does? 
The surprising answer is that nothing does. There 
is nO way to test completely a reasonably complex 
program in a realistic time. Partly for this reason, 
testing follows the law of diminishing returns — 
the number of errors found per unit of effort 
decreases with each extra unit. So, the time to stop 
is when the effort of doing it outweighs the cost of 
the program’s (as yet undetected) faults. 
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However, despite these drawbacks, it is worth 
devising some method of testing. A reasonable 
assumption is that if a machine will operate 
correctly on one datum of a particular type it will 
operate correctly on all data of the same type. So, 
if a subroutine works for one positive integer 
within its range, it should work for all positive 
integers in that range. This leads us to a type of 
testing known as ‘equivalence class testing’. The 
idea is to develop a set of test cases that are each 
representative of a class of cases that should all 
behave in the same way. Thus, if a piece of code 
checks that an input is in the range 1 to 100, we 
should test for inputs that are less than the lowest 
value expected, greater than the highest value, and 
within the expected range (value< 1; value> 100; 
and 1=<value=< 100). 

Examining every logic path can also be 
simplified to invoking each point of entry to all 
routines (although ideally there should only be 
one for each) and, inside each routine, covering 
each possible outcome of every decision branch. 
In figure 2 we have a routine for adjusting bonus 
points in a game. It takes the input parameters 

Just Testing 
- Acomplete set of faci: 
calculated test data for the 

LEVEL 
6 
4 
i 
4 
7 

1 

1 

6 
6 
4 

7h 
4 
i 

INPUT 

200 
950 
990 
200 
200 

2900 
990 
200 
200 

2900 
2900 
950 
950 

— example illustrated in the 
flowcharts might look like this: 

OUTPUT 
HITS BONUS BONUS 

1300 
2300 
3950 
800 

1400 
2600 
950 
300 
300 

2600 
2600 
950 

— 590 

| 



bs af 

-BONUS,LEVEL and HITS and returns a (possibly — 
new) value for BONUS.It might be written thus: 

6030 IF LEVEL>2 AND HITS=10 THEN 
BONUS=BONUS*LEVEL 

6040 IF LEVEL=6 OR BONUS> 2000 THEN 
BONUS=BONUS+100 

To cover the outcome of each conditional 
expression, we need to consider the inputs to each 
that would cause an output of ‘yes’ or ‘no’. In both 
decisions we are looking at the effects of two 
variables combined by a logical operator (AND and 
OR). This means that we have to take the combined 
values of the variables and not their individual 
values into consideration. To see why, consider 
what would happen if we tested values for LEVEL of 
4 and 1 and for HITS of 10, 5 and 20 in the first 
decision. When LEVEL=4, the three values of HITS 
are tested but when LEVEL=1 they are not. This is a 
case of part of a decision ‘masking’ another part. 
So that we can test each part separately, it is best to 
simplify compound decisions. 

Looking at figure 3, we can see that with four 
binary decisions there are 2* (=16) possible 
outcomes and we must cover them all. A start is to 
list the conditions for a yes or no outcome for each 
decision like this: 

yes 

no 

These can then be used to derive the values for 
representative test data. For instance, for the path 
taking the route adfi (see figure 3), LEVEL must be 
greater than 2 and equal to 6, HITS must be not 
equal to 10 and BONUS may be any value (because 
it is not involved). The values LEVEL=6, HITS=20 
and BONUS=150 would exercise this path tS 
would many others, of course. The route abehj 
could be tested with LEVEL=4, HITS=10 and 
BONUS=600 (don’t forget we are talking about the 
input value of BONUS that may later be multiplied 
with LEVEL). 

Equally importantly, the results that should be 
produced by each set of test data should be 
calculated before the test run so that the results can 
be compared. The input data on their own will 
merely test whether the program runs. To test that 
it is doing what it should, the output must be 
calculated (by hand) beforehand. A complete set 
of test cases for this example is shown (left). _ 

Equipped with a method of ‘exercising’ our 
software, we now need a way of tackling a large 
program so that the complexity does not become 
overwhelming. It is here that another benefit of 
structured programming is felt. Programs written 
as a collection of independent modules arranged 
in a hierarchy allow us to test each module 
individually. Because the modules are arranged in 
this way, we can start with the topmost module and — 
work down, testing each individual module only — 
when all of those above it have been tested, and we 

Decision Masking 
Simplifying compound decisions 
and labelling the flowchart links 
makes systematic testing easier 

can use already-tested modules to provide data for 
those lower in the structure. | 

The module being tested will have above it 
(unless it is the first one), a fully tested driver 
module. The modules below it, known as stubs, 
are, so far, untested and therefore unreliable, so 
they are simulated by short pieces of code that 
simply return the appropriate test data when 
called by the module being tested. This 
arrangement is sometimes known as a fest harness 
and it is a framework into which module routines 
can be put for testing. Figure 4 shows the principle. 
Modules 1, 2 and 3 have already been tested while 
modules 5, 6 and 7 are simulated. 

One final point must be stressed. Testing is an 
important part of the program’s life cycle and, as 
such, deserves to be well documented. It pays to 
keep records of the test data derived for a routine 
so that, if it shows a bug later, the same tests will 
not have to be repeated, or the testing can be 
examined for where it was inadequate. 

code that artifically generates 

wad QOOOGUDO 
SO0GO0O0000L7 
OOOO 07000000; 

Top-Down Testing 

Testing is made much simpler by 
the top-down approach, since 
each module can be tested as it 
is written, both in isolation and 
in association with othertested 
modules. The behaviour of 
unwritten modules can be 
simulated by writing ‘stubs — 

examples of the module's 
predicted output 

LIZ DIXON 
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Plug-in Protection 
_ Filtering the mains power supply 
using a plug-in unit like this to 
suppress high voltage ‘spikes’ or 
current surges can save computer 
users hours of wasted effort by 
eliminating the accidental resets 
‘that may be caused by such 
transients 

FILTERING 
Anyone who has ever used the tone control on an 
amplifier knows the commonest meaning of 
filtering — altering a signal by blocking the 
transmission of some of its component 
waveforms. The simple rumble filter often seen 
on audio amplifiers, for example, is a variable 
high-pass filter, which passes only those signals 
whose frequency is higher than some set value: as 
you turn it up, this lower limit is raised, thus 
favouring the high-frequency treble sounds. 

The filtering of computer data transmissions to 
remove electrical noise is vital in preventing errors 
being induced; both frequency filters and error/ 
parity coding are used for this purpose. Many 
Sparen are fitted with a mains supply filter to 

block high-voltage ‘spikes’ or ‘transients’ (usually 
induced by the switching of high-current devices 
such as lift motors or commercial freezers). These 
pulses might otherwise get past the computer’s 
voltage regulator, and damage the chips or reset 
the system. 

Information can be filtered, or masked, by 
logical operations. For example, ANDing the 
contents of a byte with 10000000 masks or filters 
the lower seven bits, passing only the most 
significant bit. If the byte contains a two’s 
complement number, then this filtered result is the 
sign of the number, indicating whether it is 
positive or negative. 

FLAG 
A program variable whose value indicates the 
state or outcome of a process is called a flag — so 
named because it is analogous to a real flag, which 
can signify different meanings depending on 
whether it is up, half-mast or down. The CPU has 
a flag register (also called the status or condition 
code register) whose bits (the flags) are set to show 
the outcome of the processor operations. If an 
eight-bit processor added 236 to 101, for 
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example, then the zero flag would be cleared, 
showing a non-zero result, and the carry flag 
would be set, showing that the result was greater 
than 255 — the accumulator’s numerical limit. 
Some of the processor’s Assembly language 
instructions vary their actions according to the 
state of these flags, thus allowing program 
decision-making. 

FLIP-FLOP 
Since computers run on binary logic, an electronic 
device that exhibits two stable states, and will 
switch states in a predictable way, is an essential 
requirement for constructing either memory or 
logic circuits. This essential component is called a 
flip-flop, or bistable (see page 168), and it is 
usually made by cross-connecting two NAND 
gates so that the output of each is an input of the 
other (see page 228). 

FLOATING POINT NOTATION 
A computer usually has at least two formats for its 
internal representation of numbers: integer and 
floating point notation. Integer notation is 
reasonably straightforward two bytes are 
allocated to each integer variable (e.g. X%) in 
signed 16-bit notation; the range of possible 
integers, therefore, is: 

Decimal -32768 +32767 
Binary 10000000 00000000 to O1tTttTT 11111171 

In floating point notation, however, numbers are 
represented thus: 

+exponent 
+mantissa xbase 

: peep: +19 
e.g. + 317440 = +.60546875 x2 

Since, in a binary machine, the internal number 
base is always two, there is no need to store it, so 
only the signed mantissa and exponents are saved, 

+number = 

Mantissa 
oe a 

byte 0 byte byte2 _byte3 
Both the mantissa and exponent are stored in twos 
complement form, so thatthe most significant bit 
of each is the sign bit. If the mantissa is adjusted so 
that it is always in the range (0.5 < mantissa < 1.0 
— or, in binary fractions, 0.1 < mantissa < 1.0) 
then it is said to be normalised; this means that the 
first bit of the mantissa after the sign bit will always 
be one. 

The great advantage of floating point notation 
is that it allow compact storage of very large and 
very small numbers. As more bits are allocated to 
the mantissa, so the precision of this format 
increases; adding bits to the exponent extends the 
range of expressible numbers. Furthermore, the 
exponential format makes writing efficient 
arithmetic routines — especially for multiplication 
and division — reasonably easy. 

4 



Portable computers can be fairly large, 
‘luggable’ machines or they may be small 
enough to fit into a pocket. Between these 
two extremes are the ‘lap-helds’. One of the 
latest contenders in this sector of the market 
is Epson’s PX-8, a portable machine with 64 
Kbytes of RAM, CP/M and a collection of 
software supplied. 

The PX-8 comes in a case the size of a telephone 
directory, and weighs approximately 2.3 kgs 
(5 Ibs). The casing is finished in two tones of beige, 
with a sliding metal handle, and at first sight the 
package looks very little like a computer. 
However, part of the case slides off to reveal a full- 
featured computer keyboard and a folded-down 
display screen. The screen is released by moving a 
sliding switch marked ‘UNLOCK’, which also 
reveals a microcassette tape recorder. The screen 
panel is ratchet-controlled and may be placed in 
any one of 11 positions, although only five or six of 
these give a good viewing angle. 

The keyboard has 72 typewriter-style keys, 
colour-coded to indicate their usage. The dark 
brown alphanumeric keys are arranged in 
standard QWERTY format on the US and UK 
versions (there is also a French AZERTY model 
for sale in Europe), with the ‘£’ sign on the English 

EPSON PX-8/HARDWARE | 

keyboard replacing the ‘#’ (hash mark) on the 
American version. (All the ‘international’ 
characters may in fact be accessed from any of the 
keyboards by changing the PX-8’s DIP switches. 
This process is explained clearly in the user’s 
manual.) There are also four bright orange cursor 
control keys, Insert, Delete and Home keys, three 
system function keys (Escape, Pause and Help), 
and five programmable function keys. 

The keyboard is manufactured to a high 
standard and is especially easy to use if the 
machine is lap-held. However, the keyboard is less 
useful if the PX-8 is located on a desktop, as the 
keys require a straight up-and-down pressure. 
Two retractable legs are supplied; these tilt the unit 
but fail to solve the problem. The Caps Lock, 
Number and Insert keys are toggle switches that 
are used to change the PX-8 display modes — 
three small red LEDs indicate which mode is 
currently in operation. 

The Epson documentation is comprehensive 
and extremely well written. Two thick manuals are 
supplied. The first is a user’s manual of several 
hundred pages, which covers setting up the 
machine, the use of the hardware and software, 
and CP/M operations. This manual also includes 
memory maps, complete lists of available 
characters and their associated codes, and a 
somewhat long machine code program for saving 

SS 

Latest Offer 
The PX-8 lap-held computer is 
made by Epson, famous for its dot 
matrix printers, the HX-20 
portable, and the QX-10 desktop 
business computer. The PX-8 
comes with 64K of RAM, a Liquid 
Crystal Display screen, CP/M, and 
several software packages for 
£798 
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The PX-8 has an 8-line by 80-character LCD screen that runs off 
the machine's battery. The screen provides 480 by 64 pixel 
resolution for graphics displays 

and loading the graphics screen from disk. The 
second volume is a superb BASIC programming 
reference guide, which is also several hundred 
pages long. This book begins by explaining how to 
instal and use BASIc (supplied, like the bundled 
software, on a ROM ‘capsule’), before going on to 
a clear discussion of the nature of programming, 
an examination of the various PX-8 display 
modes, and a detailed breakdown of all BAsic 
commands available. 

The PX-8 uses a Z80-compatible CMOS CPU. 
CMOS (Complementary Metal Oxide 
Semiconductor) chips require considerably less 
power than standard CPU chips, and this fact, 
together with the PX-8’s use of a low-power LCD 
screen, enables the unit to be run entirely on 
battery power. Two battery units are supplied — 
one for main power use and the other as a back- 
up. The battery must first be charged before the 
computer can be used, so an eight-hour wait must 
be expected between first setting up the machine 
and actually using it. The main unit is rechargeable 
and gives up to 15 hours of continuous operation 
before charging is necessary. Epson claims a life 

_ expectancy of three to four years for this unit. 
Once the PX-8 is ready to go, the operating 

system must be initialised. The steps needed to 
accomplish this are explained in detail in the 
manual; these involve entering the day, date and 
time, and taking care of a few ‘housekeeping’ 
tasks. One of these is the formatting of a RAM 
disk. The PX-8 has the ability to set aside a portion 
of RAM — user selectable between nine Kbytes 
(the default value) and 24 Kbytes — for use as a 
‘disk’ storage device. The operating system treats 
this area of memory in exactly the same fashion as 
it would an external disk drive. Before use, the 
RAM disk must be formatted and the amount of 
-RAM tobe used specified. Epson also provides an 
add-on RAM disk unit, containing 120 Kbytes of 
extra RAM at a price of £270. 

Once these details have been taken care of, the 
PX-8 loads the CP/M operating system from 
ROM and displays a CP/M utilities and ROM 

610 THE. HOME COMPUTER ADVANCED COURSE 

ROM Exchange 
Pulling back a small panel on the underside of the PX-8 reveals the 
slots that hold ROM-based software. Portable Wordstar is installed in 
the machine, along with the CP/M operating system. Io switch from 
Wordstar to Calc, you simply exchange the ROM chips 

software directory in menu form on the LCD 
screen. Software in any of three formats may be 
used — cassette, disk or ROM. ROM software is 
held on EPROM chips that slide into a socket 
located underneath the machine. The software 
supplied with the PX-8 — Portable Wordstar, 
Portable Calc and Portable Scheduler — is 
supplied in this ‘capsule’ format, as is the BASIC 
interpreter. To select a particular application, the 
cursor keys are used to indicate the desired choice 
and Return is then pressed. The chosen program is 
loaded from ROM (addressed by the PX-8 as 
drives A and B) into RAM (addressed as drive A). 

The LCD screen gives an eight line by 80- 
column display, with a graphics resolution of 480 
by 64 pixels. The greatest drawback of this type of 
screen — and in fact the only major disadvantage 
of this excellent machine — is the slowness of the 
display. Characters appear quickly enough as they 
are typed in, but any erasures — especially those 
involving whole words or sentences — are slow. 

The software supplied with the PX-8 is fairly 
comprehensive. In addition to the word processor, 
spreadsheet and database already mentioned, 
Epson provides a telecommunications program 
for use with a modem, and a program that allows 
files to be transferred from the PX-8 to larger 
machines, such as Epson’s QX10. And, as the 
PX-8 is a CP/M machine, much existing CP/M 
software should also be usable. 

PX-8 Basic is Epson-enhanced Microsoft, 
including AUTO line numbering and renumbering, 
a full screen editor, graphics and sound 
commands, statements that support 
communications through the built-in RS232 
interface, and commands that enable the 
microcassette recorder to be used as if it were a 
disk drive (for direct access storage). 

All in all, the Epson PX-8 is a marvellous 
computer. It is ideal for business executives, for 
journalists, or for anyone who needs a small 
powerful computer that may be used on the move. 
With its excellent features and reasonable price, 
the PX-8 is in a class of its own among portables. 



ee 

64K RAM, 39K ROM plus 6K 

video RAM 

Text: 80 columns x 8 rows. 
Graphics: 480 x 64 pixels 

e a 8 
‘psn

 

RS232C, serial, bar code reader, 

analogue input 

= 
enhanced Microsoft BASIC 

operating under CP/M 

2 key typewriter- style, QWERTY 
format, including cursor control 
and five programmable function 
keys. 12 keys can be used to form 
a a numeric | keypad 

Two large ring- -bound volumes, an 
operations manual and BASIC 
reference guide. Both are very 
thorough, and well written 

aE 

Wide LCD screen (80 characters) 
makes it easy to follow what is 
happening on the screen; ROM- 
based software simplifies loading 
programs into memory; easily 
expandable 

LCD screen shows only eight lines 
and is slow to manipulate. Even 
with excellent documentation, 
CP/M is nota very triendly 
operating system, especiaily for a 
first-time user 

CHRIS STEVENS 
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Tandem Turtie 
Having discovered how to drive 
the Lego vehicle backwards and 
forwards, we can now link two 

of them to make a buggy. The 
motors can be switched 
individually, making the new 
vehicle far more manoeuvrable 

than the old 

DUAL CON 

In the last section of this series we wrote the 
software to control a Lego car with one 
motor. We were able to move the car in two 
directions by simply switching the current 
from the output box. Now we extend these 
principles to control a Lego car powered by 
two motors. 7 

If we use two motors of equal power to drive a 
vehicle, we can gain computer control over all 
directions of movement by combining the forward 
and reverse movements of each motor. This allows 
us to turn the vehicle as well as direct it forwards or 
backwards. There are, in fact, two methods of 
turning a twin motor vehicle; the first of these is 
simply to stop one motor while turning the other. 
This will cause the vehicle to turn in an arc, 
pivoting about the stationary wheel(s). The 
second method involves turning one motor 
backwards as the other turns forward, improving 
the manoeuvrability of the vehicle as, in turning, 
the vehicle will pivot about its central axis. 
We can control each motor bi-directionally by 

using the four red outputs on the low voltage 
output box (built on page 574) and connecting the 
right-hand motor to terminals 0 and 1, and the 
left-hand motor to terminals 2 and 3 (positive and 
negative, respectively). 

Each motor is connected across a pair of 
adjacent positive output terminals so that we can 
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have independent directional control of each 
motor. By placing the appropriate number in the 
data register we can now make the vehicle move 
forwards or backwards, or turn to the left or right. 
The right-hand (RH) motor will go forward if line 
0 is set high and line 1 is set low, and go backwards 
if line 1 is set high and line 0 is set low. Similarly, the 
left-hand (LH) motor will go forwards if line 2 is 
high and line 3 is low, and backwards if the 
converse is true. By combining these movements 
we can control the motion of the whole vehicle: 

The following program allows us to control the 
vehicle directly from the keyboard using “T”’ for 
forwards, ‘B’ for reverse, ‘F’ to turn left, and ‘H’ to 
turn right. If no key is pressed then the vehicle will 
stop. ; | 

BBC MICRO 
10 REM BBC TWIN MOTORS 
20 DDR=&FE62:DATREG=&FE60 
30 ?DDR=255 
40 REPEAT 

50 AB=INKEY$(10) 
60 PROCtest_ keyboard 
70 UNTIL AB="'X”’ 
80 ?DATREG=0 
90 END 

1000 DEF PROCtest_ keyboard 
1010 IF A®=""" THEN ?DATREG=0 
1020 IF INKEY(—36) = —1 THEN ?DATREG=5 
1030 IF INKEY(—101) =—1 THEN ?7DATREG=10 
1040 IF INKEY (—68) =—1 THEN ?DATREG=6 
1050 IF INKEY (—85) = —1 THEN ?7DATREG=9 
1060 ENDPROC 

COMMODORE 64 
10 REM CBM 64 TWIN MOTORS 
20 DDR=56579: DAT REG=56577 
25 POKE650,128: REM REPEAT KEY MODE 
30 POKE DDR,255 
40 GETAS 
50 GOSUB1000:GOTO70 
60 POKEDATREG,O 
70 IF A®<>“’X" THEN FOR 1=1T0100:NEXT:GOTO40 
80 POKE DATREG,O 
90 END 

1000 REM TEST INPUT S/R 
1005 IFAB="" ’’ THEN POKE DATREG,O 
1010 IFA8=""T"” THEN POKE DATREG,5 
1020 |IFAS=""B" THEN POKE DATREG,10 
1030 IFAB="‘F’” THEN POKE DATREG,6 
1040 IFAB=""H” THEN POKE DATREG,9 
1050 RETURN 
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In each version of the program the vehicle will 
move only while a key is being depressed. As soon 
as the key is released, the motors are turned off by 
placing a zero in the data register. The program is 
exited in each case by pressing the ‘X’ key. 

In the BBC version of the program the 
procedure TEST-KEYBOARD allows us to test the 
keyboard directly, rather than reading the 
keyboard buffer, by using INKEY. This allows more 
responsive control of the vehicle. The 
Commodore 64 version firstly turns on the 
keyboard auto-repeat so that if a key is held down 
it will keep sending characters into the keyboard 
buffer to be read by the GET command. 
Unfortunately there is no way of reading the 
keyboard directly and accurate control is therefore 
more difficult than on the BBC Micro. 
Responsiveness can be improved by clearing out 
the keyboard buffer just prior to reading it. 
Inserting the following line into the Commodore 
version of the program will achieve this. 

35 GET JS:IF IS< >“ THEN35 

In addition, the GOTO at the end of line 60 should 
be changed to GOT035. 

The speed at which a key repeats when held 
down can cause a problem with both versions of 
this program. If the main program loop is executed 
faster than the key repeat time, then when the 
routine comes to test for a keypress again it will 
think that no Key is being pressed. This will result 
in a rapid switching on and off of the motor as the 
output alternates rapidly between that set for the 
chosen direction and zero. In each of the versions 
of the program this problem has been obviated by 
adding code to slow down the execution time of 
the main program loop. In the BBC version using 
INKEYS(10) causes the computer to ‘hang 

around’ for 10 hundredths ofa second, waiting for 
an input, before moving on. In the Commodore 64 
version a short delay loop has been added in line 
60. The values of these delays were found by a 
process of trial and error, and are dependent on 
the length of time needed to execute one pass of 
the routine. You may find, when writing your own 
programs, that the routine execution time exceeds 
the key repeat speed; if not then simply insert a 
short delay into your code. 
Now that we have gained control over the 
movements of our vehicle it is interesting to design 
a program that will ‘memorise’ a sequence of 
moves and replay them. ‘To do this we can make 
use of a two-dimensional array that records 
direction and the time taken for each different. 
manoeuvre made. The first part of such a program 
will be the same as those already given but the 
second part will replay the stored data. The data 
will be stored in an array DR(), where DR(C,1) stores 
direction and DR(C,2) stores the time taken for each 
movement. A new element in the array is used 
each time a new direction is selected. This 
condition is indicated by a change in the contents 
of the data register. A counter, C, is used to keep 
track of the array elements. 

BBC MICRO 
1000 REM BBC MOVEMENT MEMORY 
1010 DDR=&FE62:DATREG=&FE60 
1020 DIM DR(100,2) 
1030 ?DDR=255:C=1:REM INIT COUNT ~ 

1040 REPEAT 

1050 AB=INKEY (10) 
1060 PROCtest_ keyboard 

1070 UNTILAB="'X"’ 

1080 ?DATREG=0 

1090 DR(C—1,2)=TIME 

1100 REPEAT A$=GETS 
1110 UNTIL AB="C"’ 
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1120 REM REPLAY DATA 
1130 FOR I=1TOC 
1140 7DATREG=DRi(I,1) 
1150 TIME=0 
1160 REPEAT UNTIL TIME>=DRi(I,2) 
1170 NEXT | 
1180 END 
1190 : | : 
1200 DEF PROCtest_ keyboard ; 
1210 IFAB="" THEN ?7DATREG=0 

1220 IF INKEY(—36) = —1 THEN ?7DATREG=5 
1230 IF INKEY(—101) = —1 THEN ?7DATREG=10 
1240 IF INKEY(—68) =—1 THEN ?7DATREG=6 
1250 IF INKEY(—85) = —1 THEN ?7DATREG=9 
1260 PT=?DATREG 
1270 IF PT<>DR(C—1,1) THEN PROCadd_ data 
1280 ENDPROC | 
1790: ) . 2 
1300 DEF PROCadd_ data a 
1310 DR(C—1,2)=TIME: REM STORE LAST TIME 7 
1320 TIME=0: REM START NEW TIME 
1330 DR(C,1)=PT: REM STORE PORT STATUS 
1340 C=C+1: REM INCREMENT COUNT 
1350 ENDPROC 

COMMODORE 64 
10 REM CBM 64 MOVEMENT MEMORY 
15 DIMDR(100,2): REM DIRECTION ARRAY 
20 DDR=56579:DAT REG=56577 
25 POKE650,128 : REM SET KEY REPEAT MODE 
30 POKEDDR,255: REM ALL OUTPUT 
35 C=1: REM INITIALISE COUNT 
40 GETAS 
50 GOSUB1000: REM TEST INPUT 
70 1F AB <>"X” THEN FOR |=1T0200:NEXT:GOTO40 
80 POKE DATREG,O: REM OFF 
85 DR(C—1,2)=TI-T: REM ENTER LAST TIME 
90 STOP: REM TYPE ‘CONT’ TO CONTINUE 
95 REM REPLAY DATA 

100 FOR I=1TOC 
110 POKEDATREG,DR(I,1) 
120 T=TI sf 
130 IF (TI-T)<DR(I,2)THEN130 
140 NEXT 
150 END 
eee 

1000 REM TEST INPUT S/R 
1005 IFAB="’ "" THEN POKEDATREG,O 
1010 IFA8=""T" THEN POKEDATREG,5 
1020 |IFA8="'B” THEN POKEDATREG,10 
1030 |FAS=""F’ THEN POKEDATREG,6 
1040 IFAB=""H" THEN POKEDATREG,9 
1045 PT=PEEK(DATREG) | 
1050 IFPT<>DR(C—1,1) THENGOSUB1500 
1498 RETURN 
1499 : 
1500 REM ADD DATA TO ARRAY 
1510 DR(C—1,2)=TI-T: REM ADD LAST TIME 
1520 T=Tl: REM TAKE NEW TIME 
1530 DR(C,1)=PT: REM ENTER CURRENT PORT CONTENTS 
1540 C=C+1: REM INCREMENT COUNT 
1999 RETURN 

This program allows the user to move the vehicle 
about under keyboard control. As each move is 
recorded as a direction and a time interval, any 
errors introduced in the timing of each movement 
will produce errors in the replay. We are entering 

into the difficult area of real-time computing, 
where program structure and execution time can 
become important factors. } 

In the next instalment of Workshop we shall 
take control one stage further by bringing our twin 
motor vehicle under the control of a joystick. 
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Memory Movements 
It is reasonably simple to write a 
buggy-controlling program that 
accepts directions from the © 
keyboard and drives the car 
accordingly. It is not much more 
difficult to extend the program 
so that it stores the operator’s 
commands, and then replays 
them to the buggy, thus 
reproducing — in theory — the 
previous pattern of movement. 
Comparing the original with the 
supposed duplicate gives a 
measure of the software 
problems caused by dealing 
with the real world: the 
computer works in exact 
numbers and times ona 
simplistic model of a perfect 
universe, not allowing for 
inertia, frictional losses, 
irregular surfaces and low- 
tolerance engineering. In the 
light of this experience, the 
performance of LOGO-driven 
floor turtles is impressive 



INVASION FORCE 

Never has ; a : game captured the public’s § 
imagination so completely as Space 
Invaders. Simple yet effective, it proved so 
successful in the arcades that versions for 
the most popular home computers were 
eventually developed. We look at the 
original Atarisoft version of the game. 

Almost every home computer now marketed ee 
a version of Space Invaders available. The game 
has become so well known that, like Hoover or 
Biro, it is now frequently used as a generic term — 
to the extent that anyone playing any arcade game 
is often said to be ‘playing Space Invaders’. 
When Space Invaders was launched in 1978 it 

quickly produced a fever of almost epidemic 
proportions. Parents became worried that children 
would spend all their time and money hanging 
around in unsavoury arcades. What the watchdogs - 

did not realise was that these children were in fact 
investigating the future. 

It can be said that Space Invaders changed the 
way society saw computers. Before the game came 
along to exploit the graphics capabilities of the 
microprocessor, computers were considered 
untrustworthy, the classic example being the 
paranoid ‘HAL featured in 2001. 

Space Invaders was the forerunner of the whole 
shoot-em-up computer game genre. Since then 

there have been literally hundreds of games 
produced where the one hero or heroine has had to 
face hordes of attacking nasties, with only their 
speed on the fire button (and three lives left) to aid 
them. 

It is an undeniable fact that Sitios Invaders is 
now showing its age. By today’s standards, the — 
game is very simple — yet no other piece of 
software has captured the public imagination to 
such a great extent. The player controls a movable 

laser base, which is used to fire at the massed ranks 
of invading aliens that move menacingly down the _ 
screen towards the Earth’s surface. A ‘life’ is lost if 
the laser base is hit by alien fire, or if the invaders 
reach the bottom of the screen. . 

There are several differences between the 
arcade original and the versions available for 
home computers. Instead of appearing out of thin 

_ air, the invading hordes now emerge from a large 
rocket that is situated to the left of the television 
screen. The invaders themselves are more brightly 
coloured and the sprites that form them are more 
complex. The defensive barriers, behind which the 
laser base could hide in the arcade version, are 
now missing, and the invaders have a shorter 
distance to travel before reaching the bottom of 
the screen. But one factor has remained constant: 
the menacing ‘heartbeat’ sound that accompanies 
the aliens’ descent. This becomes more insistent as 
the invaders get closer and closer, and serves to 
generate a heady rush of adrenalin, which is 
probably the major reason for the game’s huge 
success. Another feature of both the arcade and 
home computer versions is the ‘mystery’ bonus. 
that is awarded if the player manages to hit one of 
the flying saucers that occasionally cross the screen 
from left to right. 

Space Invaders has now managed to retain its 
appeal for six years. Despite the availability of 
considerably more sophisticated pieces of 
software, Space Invaders remains an exciting and 
highly enjoyable game — it is truly a ‘software 

| classic’ 
— 

oe nAANN ’ 
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— Ver sion was 

then translated, virtually lin 
two machines. Partly because of this translation, 
and partly because space was limited, the screen 

_ formatting is rudimentary, and no use is made of 
colour, sound or hi-res graphics. Improvements in — 
all these areas can, therefore, obviously be made, 

- but will not be discussed here. 

USEFUL POINTERS 
| We have examined ways of defining 
characters on the Commodore 64, BBC 

Micro and Sinclair Spectrum. Here we 
discuss possible program improvements, 
and concentrate on the problem of saving 
and loading our redefined character set into 
a specified | area of the 64’s ‘memory. | 

Now a a4 aes up 

difficult of the three to p : 

Leaving aside questions of programming 
_ efficiency (not really vital in this program, since 

there are no speed-dependent tasks), we will 
concentrate on the user interface: instructions, | 

Wes help, command keys and facilities. 
There are no instructions in the program, 

a on mainly because the listing had to be fitted onto a 
single page of the course. An instruction page ~ 

could be printed on the screen at the start of the 
run, and there is probably room on the main screen 
display for some abbreviated reminders — a 
cursor movement display, perhaps, and one-word 

- summaries of the command keys. This should 
largely remove the need for a help page. 

The choice of command keys might be 
_ improved. On the BBC Micro and the Spectrum 
the cursor is moved around the window by the 
usual cursor control keys, whereas on the c 
Commodore the unshifted function keys are used. 
This makes for very convenient programming in 
the Commodore version since the ASCII codes of 
the eight function keys are consecutive between 
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133 and 140, but the layout of the keys themselves 
is not exactly ergonomic and they do not repeat — 
unlike the BBC and Spectrum keys. This last can 
be changed on the Commodore by POKE 650,128, 
but the function keys themselves cannot be made 
easier to use, SO you may wish to restore cursor 
control to the curser keys. 

Another possible improvement is the dicice oe 
cursor movement strategy. As written, this simply 
disallows as illegal any command that would move 

idow. The alternative is to 
e ashion: if it is moved off 

t can wrap around to 

in ronan 3500. 
rovide are ok minimum 

and in all three vel nid be useful to be 
able to copy one ck definition to another 
character — so that CHRS(N) and CHRS(N+1) 
represented the same character, for example. You 
might want a hard copy of the new character set, so 
a printer: option could also be added. The 
program’s simple modular structure makes adding 
these commands reasonably Stralgnttonward. 

| COMMODORE 64 SAVE 
A problem unique to Commodore Basic is that the 
SAVE command seems to refer only to the entire 
BASIC program area, whereas the other two 

the BASIC program area by two nulitness pointers — 
_TXTTAB (at locations 43 and. 44), and VARTAB (at 45 
and 46). The first, TXTTAB, points to the start of the 
BASIC program area (usually at address 2048 
onwards), while VARTAB points to the start of the 
BASIC ‘variables area; since this starts where the 
BASIC program finishes, VARTAB effectively points 

_to the end of the asic program area. If we change 
these pointers so that they indicate the start and 
finish of the new character set, and then issue a 
SAVE command, that should solve the problem. 

Before we do this, however, we might 
reconsider the location of the character set itself. 
The subroutine at line 61000 (see page 573) 
copies the ROM character set to atwo Kbyte block 



~ commands on the screen for you to execute. : 
6) The TXTTAB and VARTAB pointers were set ae 
Program 2, so SAVE “filename” saves the entire two 
Kbyte character set area between 2048 and 4097. — 
In future, to run the character generator program - 

Of RAM beginning at 14336, and line 50 sets the 
top-of-memory pointer below this block, to 
prevent Basic from overwriting it. In this way, for 
the sake of protecting two Kbytes, we are cutting 
user memory by two-thirds. This presents no 
problem while running the character generator 

programs area at 4915: 2 ontiene The solution 
seems to be to put the character set as low as 
possible, and move Basic above it! This can be 
done by adjusting the contents of the TXTTAB 
pointers, but it cannot be done from within a BASIC 
program, and it must be done before the character 
generator program is loaded into memory. | 

The sequence of actions, then, is: 
1) LOAD and RUN Program 1. This orate 4 the 
necessary relocation commands onto the screen, 
so that you can execute them 1 in direct mode, by 
pressing Return. 
2) LOAD the character generator program and : = 

: make the following changes: | 

61100 CGEN=53248:NCGEN= 2048 
61500 POKE PO, PEEKPO)AND2A)OR2 : ee 

and delete line 50. . 
3) SAVE this new v 
4) LOAD and RUN the 
before. ae 

5) When you finish with the program, LOAD ; 
RUN Program — “Program 1, this prit 

- you must repeat this sequence, except for step 2. 
_ When you want to retrieve the character set, 

; you must LOAD and RUN Program 1, to move BASIC — 
up in memory, and then LOAD the character set 
thus: 

LOAD“filename’, DN : 

where DN (device number) is equal to one for 
cassette use and eight for the disk drive. The ‘1’ on 

_ the end of the command is known as the 
_ secondary address, and is the Commodore way of 
sending command parameters | heral 
devices. I means that the fil oaded_ 
to the memory from whic saved, 
rather eing directed by ae 

e when a file is SAVEd the er aane 
system S$ 

~TXTTAB. 

program, but will be a potential source of difficulty 
if we | for 

the RAM start address as the first 
data item in the file. When you use the unadorned | 
LOAD command, the start address in the file is. 
ignored in favour of the address ee to by 

ih Gas you've re-located BASIC. = atch loaded: athe Ne 
new character set, you must make the operating So ee 

system point at the new character set; this ASee ee ee 

— 204REM Jnthindiniiinkiinbiihiie | 
800 PRINT CHRS(147):PRINT:PRINT = 
400 PRINT“POKE43,0:POKE44,16:POKE45,3: POKEAG, 1 
500 PRINT“POKE4096, 0: POKE4097, u POKE4098, 
O:CLR:NEW" 
600 PRINT CHRS(1 9) 

— 1QQREM Reevereredeeeeee eee EE 
— 200REM% _ PROGRAM2 — * 
201 nO RUN THIS PROGRAM alge 
202 REM* THEN HIT RETURN TWICE * 
203 REM _ THIS RESETS BASIC PTRS — Se 
204REM LRRREEA RARE ALAR EERE LEER, 
300 PRINT CHRS(147):PRINT:PRINT. 

- explained in the table, and is demonstrated = in the new version of line 61500. gone in this Se ee 

artide. ee 

Al 99R EM LLELELET IRATE RE LE LEE | 

~ 200REM% — “PROGRAMA = oe 
201REM* -RUNTHISPROGRAM * © 
202REM% THEN HITRETURNTWICE 8 & 

—  203REM% THIS MOVES BASIC TO 4096 Ss & 

400 PRINT“POKE43,0:POKE44,8:POKE45, 1: POKE46, ie - 
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500 PRINT“POKE4096,0:POKE4097,0: POKE4098, 0: CLR® | 
— 600 PRINTCHRS(19) 



MATCH-MAKING 

indexed addressing on the 6809 processor. 
Here we examine how this is used to 

perform simple arithmetic on values in the 
index registers and discuss the use of 
subroutines in a string-matching program. 

In the previous instalment of the course we took 
our first look at indexed addressing on the 6809 
processor. In indexed mode addressing, the 
effective address specified by, for example, 
OFFSET,X is formed as the sum of the offset (which 
can be a constant or the contents of a memory 
location) and the current value held in the index 
register specified (in this case, the X register). We 
saw that in some common situations the offset may 
be zero, in which case we can write ,X (although 0,X 
would also work). In special cases, one of the 
accumulators A, B or D can be used for the offset 
(e.g. B,X). And we took a look at how one of the 
most common uses of indexing — stepping 
through a table of values — can be made easier by 
the use of auto-increment and auto-decrement 
mode. This mode increments a register by one or 
two after the instruction has been carried out (,X+ 
and ,X++), or decrements the register by one or two 
before the instruction is carried out (,-Y and ,--Y). 
Now we can briefly look at how indexed 

addressing can be used to perform some simple 
arithmetic on values in the index registers using the 
LEA (Load Effective Address) instruction. The 
normal arithmetic instructions will not work on 
the values in registers other than the accumulators. 
Although it is possible to transfer the contents of 
the index register into the D accumulator, perform — 
the arithmetic and then transfer the result back, 
this is an awkward and slow procedure. The LEA 
instruction (which can be applied to the X, Y, S and 
U registers only) will perform any necessary 
address calculations and then load the effective 
address value. Normally the contents of an 
effective address would be loaded, so this is a 

useful alternative. | 
Let’s take a look at an example. The instruction: 

LEAX =A 

will calculate the effective address as the sum of —1 
and the current contents of the X register. This 
address is then loaded back into X, effectively 
decrementing the value in that register. This is not 
the only use of this instruction; it could be used, for 
example, to carry out an address calculation once 
and save the result, rather than perform that same 
calculation a number of times. Ae 

It is also possible to do a certain amount of 
_ arithmetic on the X register using the ABX (Add B to 
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X) instruction, which does an unsigned addition of 
the contents of B to the contents of X. However, 
this is not as generally useful as LEA. 

SUBROUTINES 
A subroutine is a self-contained section of code 
that is called from the main program (or another 
subroutine) to perform a specific task. Once that 
job has been done, control is automatically 
transferred back to the calling program at the 
instruction immediately following the original 
subroutine call. There are three main reasons for 
using subroutines: | 

1) To save writing the same piece of code more 
than once. It is more convenient to write an often 
used piece of code. as a subroutine and call this 
when it is required. 
2) So that a library of common routines can be 
built up, and then used in a number of different 
programs. 
3) To break a program down into smaller, more 
manageable sections. | 

The most significant thing to remember about 
using subroutines in Assembly language is that 
both the calling program and the subroutine will 
be using the same registers. One of the most 
common errors in machine code programming 
occurs when, having stored a value in one of the 
registers, a program calls a subroutine and on its 
return finds that the contents of that register have 
been altered by the subroutine. Therefore, it is vital 
to know, and to document, the registers that a 
subroutine uses. It is particularly essential to save 
the contents of the registers being used when a 
‘subroutine is called, and restore those contents 
when control returns from the subroutine. 

Later in the course we will look at how the 
stacks are used both as a convenient way of saving 
such data, and as a means of passing values and 
addresses (parameters) to the subroutine. For the 
moment, however, we shall assume that the 
subroutine uses the same data as the calling 
program (global variables) and any other values 

that it needs will actually be in the registers. A 
subroutine call is made by means of one of these ' 
instructions: . | : 

@ BSR: Branch to SubRoutine 
@ JSR: Jump to SubRoutine 

The BSR command causes a relative branch — it 
finds the subroutine at a certain offset from the 
current value of the program counter. This 
instruction is normally used for subroutines 
written as part of the program. | 

‘The JSR instruction calls a subroutine at a 
certain specified address. This would be used for a 



subroutine held in ROM, or for a library routine 
that always occupies the same position in memory 
— parts of the disk operating system, for example. 
When the processor encounters a BSR or JSR 

instruction, the current value of the program 
counter is ‘pushed’ onto the system stack using the 
S (stack pointer) register.If your subroutine uses 
the S register for anything other than a further 
subroutine call, you must ensure that it gets 
restored to the correct value. The address of the 
subroutine is calculated (in the case of BSR) and 
loaded into the program counter. Thus, the next 
instruction to be accessed will be the first one of 
the subroutine. You must be sure, therefore, that 
the subroutine begins with an instruction and nota 
byte of data. ! 
A subroutine must end with an RTS (ReTurn 

from Subroutine) instruction, the effect of which is 
to ‘pull’ the old value of the program counter back 
off the stack. Execution of the program will then 
continue from where it left off before the 
subroutine call. 

The example program we give here is rather 
more complex than those we have given 
previously, but it can be made more manageable 
by the use of a subroutine. The program searches a 
table containing strings of unequal length, and 
extracts a value associated with one particular 
string. The strings are held in the normal way: 
beginning with a byte indicating the string’s 
length, followed by the characters that make up 

au 

the string, and ending with a 16-bit address 
associated with the string. 

The end of the table is marked by a zero length 
string — in other words, there is a value of zero 
where the length byte should be. We shall assume 
that the address of the start of the table is held in. 

910, and the address of the string whose match we 
have to search for is held in $12. If the duplicate is 
found in the table, then the corresponding address 
is to be held in $14. If the string is not found, then 
$12 and $14 should be both set to zero. 

STRING-MATCHING z 
String-matching is a task that occurs in many 
situations — most notably in managing a BASIC 
interpreter’s string variable accesses: each 
identifier (or variable name) must be replaced by 
the address in which the value of that variable is 
stored. 

The problem divides easily into two parts: we 
must step through the table until either the string 
we are looking for is found or the end of the table is 
reached. At each stage in the search we. must 
compare two strings (the one we are looking for 
and the one at the current position in the table) to 
see if they match. 

This string comparison is an obvious candidate 
for a subroutine, because not only is it going to be 
used more than once in the program, but it also 
enables us to split up the problem into useful 

CTION 
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sections. It is also a good subroutine to have 
available for use in other programs. — 

The subroutine needs two data items from the 
calling program — namely, the addresses of the 
two strings to be compared. Since the subroutine 
has to step through the strings byte by byte, it is 
best that these two values are passed to the index 
registers, X and Y, where they will be needed. The 
subroutine must also pass back two values, one to 
indicate whether or not a match has been found, 
and the other to show the address itself in the case 
of a match. 

TRUE OR FALSE 
It is possible to pass a Boolean parameter (true or 
false) using one of the condition code register 
flags, but this requires an exact knowledge of the 
effect of each instruction on the flags. In our 
program we will pass values back to the calling 
routine as either $00 (all zeros) if the match is 
found, or SFF (all ones) if it is not. 

To make the subroutine more generally useful, 
we won't pass back the actual address for a found 
match, but will instead leave the X register pointing 
to the address where the required address can be 
found. This has the additional advantage that the X. 
register, by stepping byte by byte through the 
string, should end up containing this information _ 
automatically, anyway. a 

One final point: our program contains one new 
6809 instruction. TST (TeST) has no effect on any 
register, but simply sets the flags according to the 
current value of the named register. 

Table 
Search 

PPPS ASIS 
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DATABASE 
Here, courtesy of Zilog Inc., we produce the second part of the programmers’ Z80 reference card. 

Mnemonic 

LG gc on 

LD Xk an 

LD EY an 

LD HL. fpr) 

LO da ian) 

LD IX tan) 

Pi iy fan) 

LO inal) BL 

LD tanh, dd 

LD tani ix 

LD inns l¥ 

LO SP AL 
LD SP IX 

LD SP iy 

PUSH aq 

PUSH IX 

PUSH IY 

POP aq 

POP Ix 

POP IY 

NOTES dd is any of the register pais BU DE. HL SP. 
QQ 1S apy of the register pairs AF BC DE HL 

(PAIR (PAIR) feter to high order and low order eight bits of the register pair respectively, 
ee ARV = A 

Flag Notation 

eg BU) 

Symbolic 
Operation 

6G — an 

ix — 5 

Ho- fant) 

ee ee 

dg: — nt i} 

dai — inn) 

‘AW — (9p +1) 

IAL = (97) 

2 

iY; = (Pp) 

(ppt i) A 

Ani 

Ins 1) — doy 

(on) = Gd, 

(on 41) — ky 
(7p) = (AL 

n+ yy 
wo) = LY 

Sie ae 
oP — IX 

Sig Ae 

(SF 2) — ag, 
(OP — 1) — QgH 
SP — SP -2 
(SP — 2) — IX, 
(SP— 1) — Ixy 
oF = SP -2 
(SP — 2) — 1Y, 
Se 
SP - SP -2 
QGH — (OF + 1) 
Qa, — (SP) 
SP — SP 42 
IXfq = (SP + 1) 
IX, - (SP) - 
Sig. Sin. 
[Ye = (SP 4 1) 
IY, ~ GP) 
oP = SP +2 

Flags 
H PIV 

e x @ 

e x e 

e x @ 

@ x @ 

e x € 

e x e 

e x e 

e x e 

@ x e 

@ x e 

e x e 

* A 
* A 

@ x « 

@ x e 

e x e 

e x e 

e x ° 

* x e 

@ x * 

e = flag fot affected 0 = flag fesel 1 = flag set & 

16-Bit Load Group 

Opcode No.of No.of M No.of TF 
76 543 210 Hex Bytes Cycles States Comments 

UO dcU oUF 3 3 tC de Par 

i. U0 Bu 
—f- Oi ve 

7 Oe UL 4 a ce 10 a 
CO Go oo 21 1 oF 

oy 

oo foe 

7 a 4 4 id 
OC 100 00) ee 

— fo 

O00 10) OG EA 3 5 16 
ee PS 

eo Se 

1 oo ED 4 6 eC 
Ui gg) Go 

a ES ee 

poet So tact 

0 1G DD a 5 eu 
OO 0 010 A 

— fy = 

eee FD a 6 20 

OU 40) O10 ok 
ee Ey ae 

ee oS 

WO 100 O10 ge 3 5 16 
a= Fy oe 

Bore ate 

7 ok ED 4 6 eu 
Ui ddl O11] 
ee 

pee a eeareee 

1 0 ee 4 6 au 
OO 100 GG ge 

ease: A 

ee EY ee 

es FD 4 6 au 

00 100 010. Be 
ES ee 

ton Fy aces 

11 111 O01 — : 6 
11 Ott 10) DR e a 10 

1 it) Oo FQ : 

11131 FO 2 é Ve 
Po OOF FQ Qa Fait 

Tt goo 101 1 3 Vi se 

01 DE 
10 HL 

Tih ie ee) 2 4 1S 11 AF 

11 100 (01 ES 

tr tit tt FID é 4 15 

1) 100 101 ES 

17 @ao O01 } 3 10 

Tt Ott 10) 0) Ss 4 1a 

71 100 001 ) 

1) ti) 101 FID < 4 ta 

1) 700 001 Et 

flag 18 Unknown, 
t = flag §s affected accearding fo the result af [he operation. 

DESTINATION 

PUSH 
INSTRUCTIONS 

SQURCE 

NOTE: The Push & Pop Instructions adjust the SP after every execution. 




